文 | 硅星闻,作者 | 刘诚忠(衡石科技创始人及CEO)

去年年底,ChatGPT 横空出世后,我所在的 BI 行业也有巨大震撼:微软的 PowerBI、Salesforce 旗下的 Tableau 等软件都相继宣告引入了AI身分,增强剖析功能。

天生式 AI 当然是今年最难以忽略的技能改造,带来了更快的相应韶光、更丰富的运用和更人性化的沟通办法,不过在与企业运营密切干系的 BI 行业,我还不雅观察到了几个对中国 BI 领域极为主要的变革。

加上难以忽略的 AI 浪潮,它们很可能将共同推动 BI 行业走向下一个阶段,共同驱动新一代 BI 的出身。

新一代BI瞻望AI增强指标体系生态合作

我在此抛砖引玉,和大家聊聊我眼中的新一代 BI 会有什么样的特点:

AI 全面降临,BI 将成最佳落地场景

发布公测后的60天,ChatGPT 吸引了10亿用户。
而它的底层技能天生式模型,也在此后的一年内带来了席卷环球的AI浪潮。

有人预测,它会大规模进驻客服、发卖等领域,也有人认为,它会彻底改变未来笔墨、图像、代码的生产过程。
不过在我看来,具有海量数据和强烈需求的 BI 行业,才是 AI 的最佳落地场景。

这不仅是基于我们的不雅观察,也是基于这大半年来我们实际打仗到的许多业务需求。

这些需求有着历史成分:所有业务软件,尤其是职能领域的运用软件,长期以来都在不断追求智能化的业务转型。

恰是以,随着流程性的需求和业务性的需求被知足,企业每每还会须要更高等的能力,让它们的做事更加智能化、自动化,例如预测、报警等。

这种智能化转型需求是长期持续、刚性的,这也是衡石选择赋能这些企业运用厂商的缘故原由。
通过数据剖析技能底座赋能,衡石可以帮助这些企业在某个业务场景具备数据聚合能力、剖析能力、可视化的报表能力,终极让业务运用完成智能化转型。

但是过去,在衡石的行业履历中,这一点有很高门槛:业务职员面对较高的技能门槛,较长的反馈周期,很难真正在业务运用上得心应手地做剖析、真正用好数据。

这也让很多好的 BI 做事,在企业里真正落地时候面临巨大的阻力,不管是组织架构上,还是实行力和专业度上。

而天生式 AI 的涌现,即是冲破了一个长期、巨大的需求面前唯一的门槛。

根据 Omdia 的报告,估量到2025年,环球人工智能软件收入将达到1186亿美元,增速极快。
报告还预测,到2025年,人工智能将被集成到险些所有新的软件产品和做事中。

如果说 BI 领域也有“末了一公里”,那现在可以说,AI已经把这条路铺好了,什么时候走通只是韶光问题。

过去这么多年的长期需求、已经完备的用户教诲、巨量的高质量数据,这些都是 AI 在 BI 领域里落地的绝佳根本,而从今年终端企业客户和软件厂商的反馈来看,我们也会创造,这一点也已经得到了验证。

比如说在运营的一个场景下,企业每每希望业务职员能够通过提问,探索业务运营指标,或者在监控对业务的一些关键指标时,能够实时创造潜在影响因子等。
这些实质上都是 BI 场景。

我们开拓的产品 HENGSHI Sense 即将发布的5.0版本中,就引入了 AI 在 BI 场景中,通过对话形式供应剖析赞助、预测等功能。

HENGSHI SENSE 5.0 AI Copilot

在我看来,比起 AI 运用在内容生产或是帮忙代码创造等领域,在 BI 干系的场景中,AI 的影响更直接、更巨大——它能够带来巨大的势能,推动一个组织的效率巨大提升、或是对关键的指标起到主要的决策辅导浸染。

指标体系进化,将成未来 BI 核心

第二点我想谈的,便是 BI 领域的指标管理体系。

2021年,两位硅谷投资人提出了“Headless BI”的观点,指出办理当前 BI 领域最大瓶颈:数据效率问题。
而好的指标体系正是这一问题的解法。

他们这样描述它的未来:指标只需定义一次,就可以在剖析场景和自动化功能中轻松利用。

它将有三个特点:

指标易定义,无需编写代码指标可灵巧用于 BI 可视化、SaaS 集成以及 API 中指标可做到实时、大规模查询,驱动 email 触发器、产品体验等自动化功能

这个“Headless”正是意味着砍掉 BI 的“头”,也便是过去大众认知中的可视化部分。

这样未来的 BI 形态,须要专注于指标、肃清口径分歧一的混乱,提升数据剖析效率,并通过沉淀指标资产,多系统复用,提升办理方案粘性。

靠近三年过去,我们可以看到,Airbnb 投入大量资源构建了 Minerva,一个单一真实指标度量数据平台,将业务指标的创建、打算、做事和消费办法标准化。

上文提到过的 Transform,核心理念之一也是创建公司级统一的关键指标,减少重复劳动。

这一点同样根植在衡石的开拓理念中。

为了担保指标能力的实现,从五年前起,衡石就投入大量资源自研了适用于构建指标体系的语义层,拥有足够强的建模语义表达能力,可以高效完成指标制订和迭代事情。

之前发布的4.3版本里,HENGSHI SENSE正式发布了创新的指标平台功能,在数据层和可视化层之间加入了一个指标管理层。

这样一来,衡石的产品能够形成完全的剖析闭环体验,让数据剖析能力进一步走进业务端。
业务职员无需打仗数据或是理解专业的 BI 观点,仅需通过编辑、拖拽指标即可进行丰富的数据剖析,零代码、大略易用。

衡石指标平台界面

至此,指标体系对付数据剖析平民化的三大影响力浮现了出来:

首先,通过集中管理和分发利用的中央化管理办法,实现了口径的统一管理,肃清了口径不一致带来的混乱。

其次,提升了建模效率,指标的统一定义便是数据建模过程的复用,大大减少了重复建模和中间表的事情。

末了,极大降落了剖析门槛,业务职员面对的是具有业务意义的指标和维度等业务观点,而不是晦涩难懂的物理数据表和字段,真正落地和实现业务职员的自助剖析。

而衡石在这一过程中对指标体系不断探索,也能够进一步赋能 toB 厂商 —— 除了将行业 know-how 沉淀于指标体系,做到各个方向的降本增效以外;通过指标平台的进化,帮助 SaaS 厂商挖掘出新的数据代价。

在即将发布的 HENGSHI SENSE 5.0版本中,衡石的指标平台进一步进化,加入强大的指标体系管理能力,可以让 SaaS 互助厂商将报表的履行过程模板化,将剖析场景产品化。

有了这一变革,和衡石互助的厂商可以通过指标平台构建完全、场景化、产品化的方案,特殊在营销互助领域有显著表示。
客户不但是购买产品,更是购买一套咨询化的办理方案,包含了行业知识和完全的业务指标体系,将推动客户业务的本色性发展。

随着指标管理能力不断进化,像衡石这样的企业能够为 BI 厂商和终端客户创造新的代价,这对 BI 领域来说,是一个重大的变革,很可能成为 BI 进一步发展的关键推动力,实质上,大量项目定制化履行的本钱可以由此转移到产品化方案的构建本钱上。

SaaS 行业生态互助增加,SaaS+BI 成为一种强大的互助模式

除了AI加持与指标体系的进化以外,更多生态互助也是我不雅观察到的一个行业变革。

新世纪以来,企业级数据量迎来了爆发性增长,企业对数据的需求越来越多样化、繁芜化,带来新的寻衅,驱动SaaS行业内更多生态互助,而这些互助也每每会与BI结合。

从横向上看,紧张因此业务场景为核心,不同企业间通过互助形成互助链条。

举例来说,在营销领域,一些企业可能专注于投放检测,一些可能专注于市场剖析,还有一些可能专注于客户关系等。
这些企业在营销链条上各司其职,通过各自的专业领域,结合不同的做事,形成一个完全的营销办理方案。

这种横向互助可以充分发挥各企业的专业上风,提高全体办理方案的质量和效率。

从纵向上看,则侧重于根本功能方向的互助。

尤其是那些须要大量研发资源的重型功能,企业可以将这些根本功能进行标准化和产品化,形成一个像引擎一样的产品。
其他企业可以基于这个功能层面进行低本钱的调用、组装和继续,避免重复造轮子。
这种互助模式可以极大降落研发本钱,加速办理方案的推出和运用。

衡石科技就从五年前起开始做这件事,目前已经搭建起了一个BI PaaS平台,专注于赋能SaaS企业、给他们供应数据剖析能力。

比如以 HENGSHI SENSE 作为底座,一个传统的SaaS厂商就可以变成嵌入强大 BI 能力的 SaaS 企业,不仅包含报表、看板等 BI 功能,更主要的是得到了衡石独特的指标平台、数据剖析、数据做事等能力。
而这个能力的加成和放大对付任何SaaS厂商都成立,它们的数据剖析的能力池也会随着 HENGSHI SENSE 的更新不断扩充。

再比如根本能力的结合。
之前衡石和数据平台厂商云器的互助便是如此。
云器是一个一体化湖仓平台,恰好能够合营衡石 BI PaaS 的独特产品形态,推出领悟的办理方案。
结合这一数据平台,衡石科技能够帮助企业更好把控数据,不再受数据离线或实时的限定利用和剖析数据;真正做到将数据剖析的全面性和便利性结合,供应一个大略且统一的 BI 剖析方案。

衡石和明道云的互助也是如此,两个具备 PaaS 形态的产品在协力办理议制化的过度投入问题,一方面从表单事情流的角度,一方面从报表剖析和可视化的角度,帮助在须要知足业务灵巧性的场景下不用重复投入研发本钱,供应在更多范围内的可自定义能力。

这样的互助其实在外洋的企业软件领域比较常见,比如供应数据管道的 Fivertran, 办理数据转换问题的 dbt、Transform,供应云数据仓库的 Snowflake,主打自助剖析、可视化的 Tableau 等。
从数据存储、处理、转换到剖析,这些企业以 SaaS 形式建立起了一个完全的工具链,通过清晰的产品路径支撑企业的数据剖析需求。

之前在海内,由于数字化进程较慢、客不雅观上定制化及配套做事需求更高,这一点在海内目前较为困难,更多须要根据每个企业的需求供应定制化开拓做事。

而随着这种纵向互助越来越多地发生,我们可以预见到,中国的企服行业也会往更高效、更专业的“尖物组合”方向迎来加速发展。

BI 行业的整体环境

末了我还想谈一下,目前 BI 行业仍旧面临的寻衅及未来机遇。

比如投资者对 BI 企业的成本效率的看重,再比如 BI 企业面临的机遇与实际的能力有一定的错配——从需求供给面来说,BI 厂商在用更高效的办法和更敏捷的速率办理某类问题。
但是目前企业当代化进程决定了还须要一定的韶光走向风雅化管理,行业的创新从某种角度上提前于市场的实际需求。

整体而言,我对新一代 BI 有着极强的信心,这是我们这一代企业核心管理能力提升的钥匙。

而它作为与企业经营最息息相关的领域,也每每有着超过经济周期的能力——一项针对超过950家企业的报告显示,在上一个经济衰退期,有80%的干系企业的业务都有增长。

作为环球第二大 BI 市场,中国 BI 行业潜力巨大。
IDC报告预测,中国总数据量将在2025年到达48.6ZB,而个中企业级数据量的占比将达69%。
随着巨量数据的产生,企业决策越来越多地依赖 BI,BI 与业务的结合也更加紧密。

有市场潜力,有 AI 推动力,有全新指标体系的改造,我期待看到新一代 BI 技能不断与各个行业发生独特的“化学反应”,指数级地提升各个企业的数据能力,共同走向数智化。
(本文首发钛媒体APP)